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Magneto-charge-transport from twisting arguments 
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Abstract. We use a model of constant negative curvatm Riemann surfaces to study the effect 
of coupling togeuler several Hall systems on the Hall conductances of,the individual systems. 
We find that on ave ras  the coupling does not effect the conductances, The method we use 
is based on the fact that the average conductances are given by Chem numben, and hence are 
stable when one vades parameters of the Hamiltonian, as long as eigenvalues do not cross. The 
parameters we change are the surface parameters. and we find the averaged conductances of the 
surface by ’hvisting’ and ‘pinching’ it. This method is applicable to other systems as well. 

1. Introduction 

We study coupled Hall systems. Specifically, we want to know whether connecting together 
several Hall systems, or connecting Hall systems to a reservoir, effects the Hall conductance 
of each ‘individual system’. 

We shall not try to salve this~problem in a fully general way, but only within the 
framework of a toy model which captures some of the properties of the general setup, and 
has the advantage of being (almost) solvable. Also we believe that our approach c c  be 
applied to other physical problems, being very general and physically intuitive. 

The paper is organized as follows. In section 2, we give a very brief review of the 
integer quantum Hall effect, and present the toy model we work with. In section 3, we recall 
some known results which we use in section 4 to calculate the averaged Hall conductance. 
In section-5 we remark on generalizations of the results to other settings, and section 6 
contains a summary and discussion. 

Throughout this paper we adopt the system of units f i  = c = 2m, = 1, and absorb the 
electron’s charge in the definition of the magnetic field B ,  and the fluxes &, In these units, 
60 (one f l u  quantum) is 2z. 

2. Hall experiments, topology and Riemann surfaces 

We review some known models for quantum Hall systems, add some new remarks, and 
explain our motivati0n.h choosing our specific model for studying coupled Hall systems. 

2.1. The quantum Hall experiment 

Schematically, a laboratory Hall experiment  is described as follows: take a sample, impose 
a voltage drop, and measure the current in a direction perpendicular to the voltage drop 
applied. (See figure I@). (There are other possible combinations of ‘imposed‘ and 

0305470/95/072015+10$19.50 @ 1995 IOP Publishing Ltd 2015 



2016 A Pnueli 

Figure 1. (a) The scheme of the Hall experiments. (b) Replacing 
the battery and ammeter by flux tubes. (c) €Id experiment on the 
toms. 

‘measured’ quantities. This is irrelevant for us here). In the integer quantum Hall effect 
scenario, the conductance, I I V ,  is an integer multiple of e2/2i7. In this paper, we only 
discuss this case. 

The integer quantum Hall effect (IQHE) was discovered in 1980 by von Klitzing et al, 
at low temperatures in samples which contained impurities 111. 

A first theoretical model for explaining the quantization of the Hall conductance was 
given by Laughlin [2]. He considered a cylindrical sample, and gave an argument for the 
quantization of the averaged Hall conductance, where the average is taken over the values of 
an ‘auxiliary’ flux tube threading the cylinder (observe that, up to a unitary transformation, 
the Hamiltonian of a system is periodic in flux parameters). The argument is based on a 
‘single electron theory’, and neglects interactions among electrons. This fact characterizes 
all the theoretical models of IQHE. Laughlin’s argument suggests an integer conductance for 
every set of states belonging to a part of the spectrum which is separated by a gap from 
the rest of the spectrum of non-localized states, for all values of the flux parameter. The 
disorder potential causes the localization of most of the states, and hence is important for 
explaining the ‘plateaux’ found in the experiment. 

An argument for the independence of the Hall conductance of the specific geometry of 
the sample was given by Thouless and co-workers (see, for example, [3]). The argument 
starts with the Kubo formula for the conductivity, and is based mainly on the exponential 
decay of the Green functions in a disordered system. 

Thouless et a1 (TKNN), [4] considered the case of an infinite sample with a periodic 
potential. For rational values of the magnetic flux through a unit cell, 4 = $0 p/q. each 
Landau level splits into q sob-bands. Using the Kubo formula, TK” proved that the Hall 
conductivity of each sub-band is an integer. Moreover, they proved (without stating it in 
so many words), that this integer is ‘a topological invariant, being a Chern number of a 
U(1) line bundle over the k torus, (k stands for the Bloch momentum vector). One gets 
this integer after integration on all k’s in the Brillouin zone. In other words only afill 
band carries an integer conductance. This is a trivial but important observation for what 
follows. Also note that TKNN proved the quantization of the Hall conductance, and not of 
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its average, as in Laughlin’s argument. 
A different approach was introduced by Avron and Seiler: they pointed out that if the 

leads are considered as part of the quantum system7 and one replaces the voltage source 
by an adiabatically time varying flux tube (say $1) and put an auxiliary flux ($2) threading 
the ammeter ‘loop’, then the charge transport through the ammeter loop during an increase 
of $1 by one flux quantum, averaged over all possible values of $2, is given by a Chern 
number (which is, by definition, an integer). The disadvantage of this approach is that 
one can prove quantization only for ‘double averaged’ quantities. (Although one may use 
Thouless’ arguments to claim that this is of no importance if there is disorder in the system). 
The advantage is that this model can be generalized to many different settings, for example, 
the model we shall discuss in this paper. 

Now, instead of the experimental setting shown in figure l(a) take the ‘gedanken’ 
experiment setting given in figure I@): a torus tbreaded by two flux tubes. For this setting, 
the same calculation used by Avron and Seiler to prove the quantization of the averaged 
Hall conductance goes through, and we get the quantization on the torus with arbitrary 
background potential. Let us also assume that the torus isflat. Then, it is easy to understand 
both the quantization and the need for averaging. Each value of the fluxes threading the 
torus represents a certain value of k if one ‘unfolds’ the torus to get its covering space, 
the Euclidian plane with a periodic potential (now with an integer magnetic flux through 
each unit cell). This is exactly the T K ”  setting. The average is not needed in the special 
case that the value of the conductance is independent of the fluxes, or, in other words, if 
the bands in the periodic potential case are flat (k independent). This is so in the case of 
a vanishing potential, and indeed, the Hall conductance of a full Landau level on the flat 
torus is one, without averaging. 

2.2. Selecting a m & l  

Can we take the model of electrons on a flat torus as a ‘good‘ model for the I Q ~ ?  On the 
one hand, from Thouless’ arguments, if one is interested in the conductance as defined by 
Kubo’s formula, and the sample is large enough, the conductance of the bulk should not 
depend on the shape of the sample, so we might as well take it to be a cylinder (as Laughlin 
did), or a torus. On the other hand, a different model is better-that of a punctured torus. 
Assuming we consider the leads as a part of the quantum system. It is then natural to take 
them to be two-dimensional, such that the connection between ‘a lead’ and ‘the sample’ 
is smooth. The corresponding Hall system is drawn in figure Z(a) (one should identify 
opposite edges). Notice that naturally, we apply a magnetic field on the leads too. It is easy 
to see in figure 2(a), and even easier in the equivalent to it, figure 2(b), that the topology 
of the sample is that of a ‘punctured torus’-a torus with a hole. 

Moreover, on a punctured torus, unlike the torus, one cm. apply a magnetic field which 
takes an arbitrary value (due to the fact that a Dirac string may enter through the puncture). 
Also, there is no need for a magnetic monopole for applying a constant magnetic field on 
the surface. Hence, this model is closer to reality. 

The ‘theoretical disadvantage’ of this model comes from the boundary: it seems 
impossible to study analytically the Landau Hamiltonian on the punctured torus of 
figure %a), if one wants to impose Dirichlet (or Neumann) boundary conditions. To 
overcome this we pick a punctured torus without a boundary: a constant negative curvature 
punctured torus. The boundary conditions are replaced by Lz (square integrability) 
conditions. 
t Notice that the system is now compact, and the number of elecuons in it is constant 
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( a )  ( b )  

Figure 2. (a) A puncrured toms (opposite sides are identified). (b) The same punctured toms, 
dmwn differently. 

(a) ( b )  

Figure 3. (a) A fundamental domain of a constant negative cuwafllre puncrured tONS. (b) The 
topology of the surface obtained after the identifications. 

As the flat toms is described as RZ/ZZ,  the punctured toms is H/r, where H is 
the Poincar6 upper half plane, and r is a discrete subgroup of SL(2, R), the group of 
transformations which leave H invariant. Afundamental domain for the punctured torus is 
given, for example, in figure 3(a). Notice that since the metric on the upper half plane is 
given by ds2 = ay2(dx2 + dy2), the boundaries of the fundamental domain are geodesics, 
and all of them are of infinite length. Because a appears only in an overall factor, a-2, of 
the energy eigenvalues, in the following we consider the case a = 1. Modification to any 
other value is trivial. 

A schematic drawing of the surface obtained after the identifications is given in 
figure 3(b). Notice that although the surface is non-compact, its area is finite. This goes 
well with the fact that the Hall system is not compact (being connected to a current source 
or to a battery), but the sample itself has a finite area. 

A ‘Hall experiment’ in this model would involve changing one of the two fluxes which 
thread the handle, and measuring the current ‘around‘ the second. 

Now, that we have both the flat torus and the punctured toms models for the Hall 
experiment, we would like to have a model for coupled Hall systems, for example, if we 
want to couple two punctured tori, we can do it in two ways: we can glue together the 
two punctures, and obtain a compact surface of genus-2, or we can cut a circle from each, 
and connect them by a cylinder, getting a genus-2 surface with two punctures. We can also 
model connections to a reservoir by adding punctures. By the uniformization theorem [5], 
all the surfaces which satisfy 2g + h 2 3, can be described as H/ r for some r. 

Hence, the model we choose for coupled Hall systems is that of a Schrijdinger particle 
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in a constant magnetic field on a genus g, finite area-Riemann surface (g is the number of 
‘handles’-for the sphere-g = 0, for the torus-g = 1 etc). The surface may either be 
compact, or have h punctures at infinity (and h infinitely long ‘horns’ leading to them). 

We consider the free case only, and calculate the average Hall  conductance^ of a full 
‘Landau level’. To prove existence of plateaux one should also prove the localization of 
most of the states in the presence of a random potential. 

3. Some known results 

The model we consider,a SchrMinger particle in a constant magnetic field on a genus g, 
finite area Riemann surface, was~studied initially in [6]. This model has the advantage that 
the whole system, including $e leads, is described by the Schrodinger operator. One can 
thread the system by Zg+h Aharonov-Bohm fluxes-2g through the handles, and h through 
the horns. The adiabatic (in this case, non-averaged) charge transport due to a variation of the 
h hornflues was calculated in [6] .  This calculation teaches us nothing about the question of 
coupled Hall systems. Indeed the horn fluxes do not have an ‘experimental set-up’ analogue, 
as one cannot put flux tubes threading the pseudo-one-dimensional leads. Here we want to 
study the averaged charge transport .due to the variation of the 2g handle fluxes. We note 
that our results, combined with the results of [6],  give complete knowledge on averaged 
adiabatic transport properties of finite &ea snrfaces of constant negative curvature. 

In this section, we summarize the results of 17.61 we need. 
Given a constant negative curvature (-l), smooth Riemann surface of genus g with 

h cusps, we can thread it with Aharonov-Bohm fluxes of three types: Zg fluxes through 
the handles, denoted by 4, j = 1, . . . , Zg, h fluxes which thread the horns, denoted by 
@, j = 1, . . . , h, and an arbitrary number of fluxes piercing the surface. In the following, 
we assume that the piercing fluxes vanish. On the surface we apply a constant magnetic 
field E > 0 (the assumption of positivity is only for convenience: all the analysis canies 
through for negative E as well). 

As was shown in [7], the charge transport around a flux 4k. (averaged over all values 
0 < Q < Za), during the adiabatic increasing of a different flux $l by one flux quantum, is 
given by a Chern number: ckl = -(i/2a)llTrP dP AdP, where P is a spectral projection 
on part of the spectrum, which is separated by gaps from the remainder of the spectrum 
for any values of & and $!, dP = Ci(aP/a$i)dq5i, and the integration is over the torus 
of fluxes: 0 < &, r$l < 2n. For the experimental set-up of the Qm, this averaged charge 
transport is proportional to the averaged Hall conductance. In our units, the constant of 
proportionality is 2n [71. 

The c ~ l  are integers. Being  topological^ invariants, they are stable under changes of 
parameters in the Hamiltonian, as long as energy levels do not cross. We shall make use 
of this stability in the following. 

(i) The magnetic field on the Riemann surface satisfies the Dirac quantization condition: 

(ii) The spectrum of the ‘Landau levels’ is 

I 

We need the following facts (see [6] and references therein): 

E - E;=, = 0 (mod2n). 

E,,(& $j!, 4) = E(2n + 1) - n(n + l), n = 0, 1,. . . , [E - f ]  
where x 6 [ x ]  < x + 1 denotes the integer part of x. (Above the ‘Landau levels’, we do 
not know the spectrum in general. All we know is that up to a shift of Bz,  it coincides 
with the spectrum of the ‘free’ Hamiltonian, with no applied magnetic field). 
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(iii) The degeneracies of the Landau levels are 

h 1 
2n 

= - 1 B - E[$] - (2n + I)(g - 1) - nh - h* 
j=l 

where A = Zx(2g - 2 + h) is the area of the surface, (oj = @jj/2n is the incoming flux 
through horn j ,  0 < { x }  < 1 denotes the fractional part of x ,  and h* is the number 
of cusps through which the incoming flux vanishes (such cusps admit scattering states. 
See 16, 8, 91). By the Dirac quantization-D(E,) is an integer. 
From these facts we learn that both the energies of the Landau levels, and their 

degeneracies, do not depend on the fluxes threading the handles, neither explicitly, nor 
implicitly (via the Dirac quantization condition). Moreover, the energy levels and the 
degeneracies do not depend on the specific surface we deal with, but only on its ‘topology’. 
In other words, they are invariant within the Teichmiiller space (which is, very roughly 
speaking, the space of all constant curvature surfaces having the same topology. For a 
more precise definition see, for example, [lo]). This tums out to be (almost) all the needed 
information for calculating the Chem numbers associated with the handle fluxes: the energy 
levels and their degeneracies are constant within the Teichmiiller space. This means that if 
we regard the ‘coordinates’ of the point in the Teichmiiller space as additional parameters 
of the Hamiltonian-their change does not effect cjj. 

4. The average Hall conductances 

In order to use the invariance for calculating conductances let us introduce a convenient 
parametrization of the Teichmiiller space, known as the Fenchel-Nielsen coordinates. More 
details can be found in [IO, 111. This parametrization enters naturally if one builds a 
Riemann surface by pasting together ‘pairs of pants’. ‘A pair of pants’ is, topologically, 
a sphere with three holes. It has a constant negative curvature -1, and its boundaries are 
geodesics. We denote the lengths of the boundaries by l i .  If l j  = 0, we get a cusp. It is 
known that a pair of pants exists for any choice of lengths ( l ~ ,  l2 ,13 ) .  Any smooth, constant 
negative curvature Riemann surface can be built by pasting together 2g+h-2 pairs of pants. 

For example, we demonstrate how to build a g = 2, h = 1 Riemann surface: we take 
2g + h - 2 = 3 pairs of pants, with lengths of boundary geodesics: L1 = (0, I , ,  l z ) ,  LZ = 
( l , ,  Zz,l3),  Ls = (Z3,4, l d )  (see figure 4). Then we glue together the ‘matching’ boundaries. 
But there is a freedom: one can rotate the boundaries relative to each other before the 
gluing. More formally: let us parametrize the boundary geodesics by an angle t E SI. 
Then, we can paste y (2 )  = y’(a - t), where y and y’ are two boundary geodesics of equal 
length, which we paste; OL is called ‘a twist parameter’. 

[ I  1, 

Figure 4. A 8 = 2, surface can be build from three pairs of pants 



Magneto-charge-transport from twisting arguments 2021 

In our example we have four twist parameters. The Fenchel-Nielsen coordinates for 
a given Riemann surface are the lengths of the boundary geodesics of the corresponding 
pants, and twist parameters. In general, the number of parameters (which is the dimension 
of the Teichmiiller space), is 6g - 6 + 2h. (In our example 8). Half of them are twist 
parameters. Notice that there are two ‘types’ of these pants boundary geodesics: geodesics 
such that cutting the surface along them splits the surface into two disconnected pieces 
(these are the g - 1 geodesics around the ‘neck‘; in our example, the geodesic of length b), 
and there are geodesics which do not separate the surface into two parts (the 2g - 2 + h 
geodesics around the handles; in the example~ll, l, and 4). 

As a matter of convenience, we denote the two fluxes through the handle ‘i’ by 
&, q5i+g. i = 1 , .  . . , g (and call the corresponding loops ‘loop i’ and ‘loop i + g’, 4. A = 4j). Because we only deal with handle fluxes we omit the superscript g of 4. 

Now we use the facts we already know to show that Vi, ( I  < i < g), lcijl = 6j,i+g. 
(The Chern numbers associated with two fluxes threading the same handle are~either +I or 
-1, and all other Chern numbers vanish.) 

(i) We take a Riemann surface with g handles, which is threaded by two handle fluxes, 
&, 4j and j # i + g, and all the other handle fluxes vanish. (The fluxes through 
the cusps need not vanish). We cut the surface into two pieces along a geodesic which 
separates the two handles threaded by q5i and q5j. Now we can ‘twist’ the piece containing 
4j by any angle a we want, and then glue it again. This gives a family of surfaces, and 
a corresponding family of Hamiltonians, parametrized by the twist parameter a. The 
Chem numbers for the ‘original’ surface, cjj(0). are identical to the Chern numbers for 
the ‘twisted’ surfaces, cij(a) (because we know that during the twist there is no level 
crossing). Now assume that we start with a ‘symmebic’ surface, such that after a twist 
by x we get a surface which is ifentical to it. Then, because a twist of x ‘sends’ bj 
to -bj, while keeping 4i unchanged, cij(z) = - c i j ( O ) .  (From physical intuition the 
direction of the electromotive force due to the adiabatic change of @j is reversed, and 
hence the charged transport must reverse its orientation, too). From this, we conclude 
that c i j ( x )  = cij(0) = -cij(O), or Vu,  cij(a) = 0. 
Notice that although we only gave a proof for a ‘symmetric’ surface and vanishing 
handle fluxes (other than 4i and 4j) the result holds for any surface and any values of 
handle fluxes because the variation of the surface and the handle fluxes does not change 
cij (there is no level crossing during the variation). More details can be found in the 
appendix. 

e (ii) We concentrate on one handle and study the charge transport around loop i + g 
during an adiabatic increasing of @i by one flux quantum. 
To do this we treat li (the length of loop i) as a parameter, and shrink it. In the limit, 
as li + 0, we get a surface of a different topology (genus g - 1, and h + 2 cusps; see 
figure 5), but, generically (for 4; # 0) with the same Landau level energy spectrum and 
degeneracies. 
As was analysed in [6], for this degenerate surface during the adiabatic increase of 4i 
by one flux quantum, exactly one state per Landau level is transported from one cusp 
to the other, or, in other words encircles the loop i + g. Hence, for j = i + g, lcij I = 1. 
(The sign depends on the relative orientation of loops i and i + g. Wlthout loss.of 
generality, we take a relative orientation such that ~ i , i + ~  = +l). 

Notice that our results hold both for compact surfaces, and for non-compact ones (‘leaky 
tori’). 
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loop i+g 

Figure 5. A degeneration of a non-sepemting geodesic reduces the genus and creates two cusps. 

5. Generalizations 

An immediate generalization of the above is to admit e ‘elliptic points’ (conic points 
of integer order) on the surface. The energies of Landau levels remain the same. The 
degeneracies are modified to (see [8, 121): 

h 

- (2n + l)(g - 1) - n(h + e )  - h* 

where uj denotes the order of the jt& elliptic point, and $, 9; denote incoming fluxes 
through a cusp or an elliptic point, respectively. The modified Drac quantization condition 
is: (1/2n)J B-x~=,((oj)-x~=l[(o;) = 0 (modl), and hence D(E,) is indeed an integer. 
All the previous analysis can be carried out for this case, too, and we get the same Chern 
numbers. 

Now we want to vary the curvature of the surface. If we do so, while keeping the 
magnetic field constant (i.e. proportional to the area form) the ground state has energy B ,  
and its degeneracy, on a compact Riemann surface, is DO = (l/zSr) J B + (1 - g) as long 
as E > Ikl everywhere, where k denotes the Gaussian curvature of the surface (see, for 
example, [13]). Arguments similar to those we used again give the same Chem numbers. 

We note that for this case (a smooth, compact, Riemann surface), one can also find an 
explicit expression for the non-averaged conductance. This was done in [ 141, and the result 
shows that the conductance, and also the charge transport, fluctuate as a function of the 
fluxes. 

For more general surfaces, all we can say is that if cij(P) are well defined, where P 
is the projection on the ground state then cij = c&+,,j, where c is a constant which is 
independent of i .  (Suficient conditions for this are that the surface has finite area, and the 
magnetic field is high ‘enough’, compared to the Gaussian curvature. We do not yet know 
what conditions are necessary). This is due to the fact that we can interchange two handles 
i and i‘ by a smooth deformation of the surface, without changing the ground- state energy 
or degeneracy, hence without changing cij. Hence, Vi, i‘, ci.;+g = ci,,;,+, = c (as before, 
cij = 0 for j # i + g follows trivially from our twisting argument). 

As another application of ‘twisting arguments’ we can prove that the cij vanish on a 
symmetric graph with a separation vertex (removing such a vertex splits the graph into two 
components), whenever i and j are in different ‘sides’ of this vertex. This follows from 
the fact that twisting one component relative to the other around the separation vertex does 
not change the Hamiltonian. More details on quantum mechanics and Chern numbers on 
graphs can be found in [15]. 
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6. Summary 

We found that on average the charge transport on Riemann surfaces is Iocai-the averaged 
transport around a handle vanished unless there was an electromotive force acting on it, 
in which case, the averaged transport is in the direction perpendicular to the EMF. In other 
words the averaged conductance resembles the expected ‘classical’ result, and does not 
depend on the global properties of the surface. However, due to [14], one knows that 
this is no longer correct for the non-averaged quantities. We note that only the average 
quantity is stable against perturbations. ~ Moreover, Thouless’ arguments suggest that in 
reality, when impurities are present, there will only be exponentially small fluctuations. 
Hence, we conclude that coupling together Hall systems,  or coupling Hell systems to a 
reservoir, does not affect the conductance of each individual system. 

We note to prove that Thouless’ arguments [3] hold for a general surface is left as an 
open problem. 

Appendix. 

In the following, we elaborate more on two central points in our proof. 

On a ‘symmetric’ surface, ‘twisting’ a handle by n reverses the signs of the two fluxes 
threading it. 
To prove this, we introduce the Schottky uniformization of a Riemann surface [16]: 
a genus g Riemann surface can be described as the Riemann sphere (C U m), with 
Zg discs removed. The boundaries are painvise identified. We denote the identifying 
transformations by q. To introduce cusps one starts with a ‘punctured‘ Riemann sphere. 
For example, see figure 6 the identifications ui, uj give a sphere with two handles-a 
g = 2 surface. 

Figure Al.  A Schonky uniformization for a 8 = 2 
surface. surface. 

Figure A2. A Schottdy unifomization for the ‘twisted’ 

We want to consider the effect of a twist on the fluxes. There are two types of twists. (i) 
A twist within a handle (around a ‘non-separating’ geodesic): such a twist is obtained 
by modifying the U’S, such that different points are identified. (ii) A twist of a handle 
relative to the others: to perform such a twist, we ‘cut’ a circle around two holes in the 
Riemann sphere (which, under the identification U,. form the handle), rotate this circle 
by the desired amount, and ‘glue’ back We are interested in the rotation by II. The 
‘new’ uniformization, after the twist, is given in figure 7: we see that uj reversed its 
direction, and the circles it identifies reversed their orientation. 
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To find the effect of this twist on the fluxes we introduce them to the model: $, and @+j 
are given by the line integrals $A along the homology cycles i (formed by the 
application of US.) and i + g (along one of the circles which are identified by q). 
From these definitions, and the stated above, it is clear that ‘twisting’ the ith handle by 
K flips the sign of &, 
We have two idenricul surfaces (the ‘original‘ and the ‘twisted‘ surfaces), which are 
each threaded by two flux tubes, such that @; = @i. 4 = -@j (we denote by 
a prime a parameter, on an operator, associated with the twisted surface). Hence, 
P’(@i, @ j )  = P(q$, @ j )  = P(&,  -&). We want to prove that cij = - q j ,  where 

~ j = - - / ~  i j T r P d P A d P  c ! . = - L j k  1 T r P d P A d P  

Using the fact that dP(# ,  @;, . . .) = dP(@i ,  @ j , .  . .) we obtain 

2n 2n 

27 +o 4;=0 ‘I 4,=0 +,=a 

T r P d P A d P  =+- TI P d P  AdP = -Ci j .  

0 
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